正弦と余弦                                戻る

 数学Tの三角比で、正弦(sin)や余弦(cos)を学ぶ。数学Tでは図形の計量(正弦定理・
余弦定理)が主なテーマだ。

 数学Uで初めて関数としての正弦・余弦を学び、その周期的なグラフの美しさに心を打た
れる。授業では両者のグラフを別々に書くが、下図からも分かるように、それらは同形であ
る。

       

 上図では、y=cosx のグラフを起点として、 y=cos(x−θ) (θは実数)のグラフを書か
せたものである。

 cos(x−π/2)=sinx なので、途中で、 y=sinx のグラフが出現する。

 正弦(sin)や余弦(cos)は定義こそ一見違うように思えるが、両者は互いに密接に関係し
ており、概念的には同種のものである。

 正弦(sin)や余弦(cos)について生徒を悩ませるのは、その公式の豊富さである。これに
ついて、兵庫県立武庫荘総合高校の楠田貴至先生が「sinクロス」という面白い覚え方を考
案されている。(→ 参考:数研通信:「平行移動を回転で」 、「『sinクロス』で微分する」

   sin(x+π/2)=cosx 、 cos(x+π/2)=−sinx  が成り立ち、さらに、

  sin(x+π/2)=cosx より、 −sin(x+π/2)=−cosx

  cos(x+π/2)=−sinx より、 −cos(x+π/2)=sinx

 が成り立つ。

 このことから、 「+π/2」という操作により、

 sinx → cosxcosx → −sinx−sinx → −cosx−cosx → sinx

と順次変化することが見て取れる。

 これらの関係式で、「+π/2」の平行移動を、下図のように、「π/2 の回転」と考えること
が、「sinクロス」というものの考え方のようだ。

         

 この方法を用いると、公式も自然と頭に浮かび上がってくるような気がする。

 また、

 sinx → cosxcosx → −sinx−sinx → −cosx−cosx → sinx

という関係は、正に微分の公式である。

 したがって、上図は、三角関数の偏角公式の覚え方のみならず、微分や積分の公式の覚
え方にも使えるというわけだ!

 このような新しい見方・考え方を発見された兵庫県立武庫荘総合高校の楠田貴至先生に
敬意を表したい。